
An Efficient Implementation of Query/Advertise

Dennis Heimbigner
(dennis@cs.colorado.edu)

CU-CS-948-2003 31 March 2003

�

University of Colorado at Boulder

Technical Report CU-CS-948-2003
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309–0430

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 MAR 2003 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
An Efficient Implementation of Query/Advertise

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Wright Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
It is demonstrated how a publish/subscribe system can be extended to support the efficient distribution of
queries to relevant sites. Queries are encoded as messages that are efficiently distributed to sites providing
advertisements, which are special queries that describe the data sets available at each site. An important
aspect of this research is to provide a sufficiently powerful language for expressing queries. It is shown how
adding a form of constraint to the system as a first class class object can support expressive queries. A
query system is constructed on top of the Siena wide-area publish/subscribe system, and it is shown how to
optimize the distribution of queries.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

An Efficient Implementation of Query/Advertise

Dennis Heimbigner
(dennis@cs.colorado.edu)

31 March 2003

Abstract

It is demonstrated how a publish/subscribe system can be extended to support
the efficient distribution of queries to relevant sites. Queries are encoded as mes-
sages that are efficiently distributed to sites providing advertisements, which are
special queries that describe the data sets available at each site. An important
aspect of this research is to provide a sufficiently powerful language for expressing
queries. It is shown how adding a form of constraint to the system as a first class
class object can support expressive queries. A query system is constructed on top
of the Siena wide-area publish/subscribe system, and it is shown how to optimize
the distribution of queries.

1 Introduction

A publish/subscribe system is normally used to distribute event notifications to a net-
work of interested subscribers based on the content of those notifications. It turns out
that it is also possible to use publish/subscribe in an alternate mode in which queries
are distributed to a network of advertisers of data sources. This second use for pub-
lish/subscribe, referred to here as query/advertise, provides functionality similar to that
of many peer-to-peer networks such as Gnutella [6] and Freenet [5].

In a previous effort [7], we demonstrated that a publish/subscribe system could be
used to mimic Gnutella, but with improved security, anonymity, and especially efficiency.
This experience convinced us that publish/subscribe systems could provide a good sub-
strate on which to implement query distribution. The one flaw in this hypothesis involved
query expressiveness. Our initial effort only supported conjunctions of equality queries
(e.g., x = 5 ∧ y = 3), which were useful, but we felt that further improvement was
possible.

The goal of this paper is to demonstrate how a publish/subscribe system, specifically
Siena [3], can be extended to better support query/advertise by providing a useful query
“language” for expressing queries. The approach we take is to embed a specific class of
constraint predicates as first-class objects into the type system provided by the underly-
ing publish/subscribe infrastructure. These predicates allow us to move beyond equality

1

expressions to support queries involving conjunctions over many kinds of relational ex-
pressions.

The paper first describes the relationship between query/advertise and pub-
lish/subscribe, and the notion of matching for queries and advertisements. Our query
system extends the structures of Siena, so we will describe the notifications and subscrip-
tions provided by Siena. We then discuss the format of constraints, and we discuss the
mechanics of modifying Siena to include constraints while also maintaining the optimiza-
tions used by Siena for efficient message distribution.

2 Query/Advertise

In the query model, an advertiser is a client of the query/advertise system who “ad-
vertises” the availability of some kind of information using a special kind of query that
describes the data available at that client. Other clients issue queries that are distributed
to each advertiser whose advertisement is deemed to “match” the query. It is the job of
the query/advertise system to ensure that queries are efficiently directed only to those
data sources that may have information matching the query. This is in contrast to a
many peer-to-peer systems in which every query is sent to every data source. It is this
behavior that makes such systems so inefficient.

Upon receiving the query, the advertiser applies it to its local data and responds with
the resulting data. As described elsewhere [7], the response may be returned through
the publish/subscribe network but it may be returned using some other mechanism such
as a point-to-point TCP connection. The net effect is that the original query client
receives, from multiple sources, data that matches its query. That client can then collate
the responses to produce an aggregated result. This whole process involves a sequence of
advertise-query-respond combinations, but we will refer to this simply as query/advertise.

For comparison purposes, recall that in publish/subscribe systems, clients publish
notification (or event) messages with highly structured content. Other, subscribing,
clients make available a filter (a kind of pattern) specifying the subscription: the content
of notifications to be received at that client. It is the job of the publish/subscribe
system to ensure that notifications are efficiently delivered to the clients with matching
subscriptions.

Publish/subscribe and query/advertise are in a sense duals of each other. A sub-
scription represents a way for a site to indicate that specified notifications should be
routed to the subscriber. An advertisement represents a way for a site to indicate that
specified queries should be routed to the advertiser. Similarly, a publisher sends out
notifications that should be routed to matching subscribers. A queryer sends out queries
that should be routed to matching advertisers. As we shall see, this duality is important
because query/advertise is mapped onto publish/subscribe by mapping advertisements
to subscriptions and queries to notifications.

It is also the case that both query/advertise and publish/subscribe assume an architec-
ture where many clients are connected together via an overlay network of interconnected
servers providing content-based routing [4]. These routers are responsible for sending

2

Notification Filter

{(author,“John Steinbeck”) {(author,*,”Stein”)
(title,“Grapes of Wrath”) (edition,>,1) }
(edition,1)
(instock,true) }

Figure 1: Example Notification and Filter

copies of messages (events or queries) to all clients exporting matching subscriptions or
advertisements.

Query/advertise has the notion of a response that is inherent in any system for query-
ing data sources, but which has no dual in publish/subscribe. Responses may in fact be
provided without using the publish/subscribe system at all. Therefore mapping the re-
sponse mechanism to publish/subscribe requires some special handling. As described
in the discussion of Site-Select (Section 8), it is possible (and even useful) to extend
publish/subscribe with some special mechanism to support responses.

3 Siena

We explicitly build upon the Siena publish/subscribe middleware system developed at the
University of Colorado because it provides a convenient interface and offers important
optimizations for improving the efficiency of notification distribution. We will exploit
these optimizations to achieve similar efficiencies for queries.

Siena notifications are structured as attribute-value pairs where attributes are simple
names and the value is taken from a limited set of types. In standard Siena, the set
of supported types is bool (true or false), long (64-bit integer), double (128-bit float-
ing point), and byte-string, which also subsumes the more traditional string type. An
example message could be represented as shown in the left column of Figure 1.

A client establishes a subscription by constructing a filter (a pattern) that specifies
the kinds of messages it wishes to receive. A filter is a set of triples of the form (attribute,
operator, value). A filter matches a notification if the value associated with each attribute
in the notification satisfies all corresponding filter triples that have the same attribute
name. That is, for a given filter F and a given notification N, the following holds.

∀ triples (x, op, a) ∈ F (1)

(∀ pairs (y, b) ∈ N

(x = y ⇒ Apply(op, a, b) = true))

where Apply(op, a, b) = (a op b)

The set of filter triples may be considered to be logically “and”ed together. A logical
“or” can be achieved by specifying multiple separate filters. The right side of Figure 1

3

shows an example filter that would match the message on the left side. Table 1 shows the
complete set of pre-defined operators available in standard Siena. Since they are used for
matching, they all produce a boolean result.

It is important to note that the attribute names used in messages and filters have
no inherent semantic meaning. As with all such attribute-based systems, there must
be some external agreement about their meaning, and all parties must adhere to that
agreement.

Siena adopts a peer architecture where arbitrary Siena servers connect to form a
specific topology. In the simplest case, a client connects to a server and establishes a
subscription. The server then forwards the subscription filter to all of its peers. Each
peer records where the subscription came from, and forwards it to its peers. Later, when
some other client connects to a server and generates an event message, the local copy
of the filter can be applied at that server to determine the next server to whom the
message should be forwarded. If a message is generated for which no filter matches at
the local server, then it will not be forwarded at all and so will generate no inter-server
traffic. This kind of content-based routing is analogous to IP routing in the Internet, but
instead of specific IP addresses, the content of messages of determines the destination
(or destinations) for the message.

4 Query Matching

Independent of the particular chosen query language, the query/advertise system requires
two interpretations of a query: query application and query intersection.

The first interpretation (application) is the conventional one where a query is applied
to a data set to produce a result set of data items matching that query.

Table 1: Siena Filter Operators

Operator Argument Type
Equals (=) bool, long, double, byte-string
Not-Equals (!=) bool, long, double, byte-string
Less-Than (<) long
Greater-Than (>) long
Less-Equals (≤) long
Greater-Equals (≥) long
Prefix (> ∗) byte-string
Suffix (∗ <) byte-string
Contains (*) byte-string
Any (any) N.A.

4

The second interpretation, query intersection, is used to determine if a query
“matches” (is relevant to) an advertisement. Thus, given two queries Q1 and Q2, we
say that Q1 intersects Q2 if the following holds.

∃ datasource d s.t. ((Q1(d) ∩ Q2(d)) ! = φ) (2)

That is, there exists a dataset, d, such that the result of applying Q1 to d and the result
of applying Q2 to d have at least one data item in common. If Q1, say, represents the
advertisement, then it makes sense to send Q2 (the query) to the advertising site because
it may be able to provide a result.

In practice there are several things to note.

1. We determine query intersection based on the actual queries, not on any specific
dataset, thus there is no guarantee that the specific data set held at some site will
actually satisfy equation 2.

2. For more efficient matching, an advertiser may provide several advertisements such
that the union of these advertisements represents his whole data set.

3. In order to avoid providing too many advertisements, a site may “fib” and provide
an advertisement that technically covers more data than is available at the site.
This allows for more “approximate” advertisements.

5 Query Definition in Siena

Our goal is to introduce some form of query expression as a first class data value in Siena.
We chose to introduce the triples used in filters as the basis for our query expressions, and
we did so because they are expressive, they are easy to use for a user of standard Siena
and because they easily integrate into Siena while maintaining many of the desirable
efficiencies provided by the Siena infrastructure.

Our specific approach was to introduce a constraint data type as a legal value
for attribute-value pairs in a Siena notification message. A constraint has the form
(operator, value), which is of course a subscription filter triple without the attribute
name.

Figure 2 shows a query and an advertisement. Note that the query technically keeps
the two-element pair format of a message notification The difference is that the value of
the attribute is now a constraint as shown on the left side of Figure 2. We will use the
term named constraint to refer to such a pair whose value is a constraint.

In this model, query application occurs when an advertising site receives a matching
query message. It takes the message and applies some subset of its named constraints to
its data source to produce a response. The exact set of named constraints and the exact
method of application are defined by the receiving site.

The other interpretation of a query is for query intersection (Section 4). This deter-
mines if a given query message is applicable at given site as determined by the adver-
tisements exported by the site. Recall our definition of a match between a filter and a

5

Query Advertisement

{(author,(=,“John Steinbeck”)) {(author,*,”Stein”)
(edition,(<,2)) (edition,=,1) }

(copies,>,1) }

Figure 2: Example Query and Advertisement

notification as defined in equation 1. There we assume that each triple is matched against
each pair with the same attribute name and a match is declared if all these individual
matches succeed.

We adapt this match procedure to define query intersection. That is, for a given
advertisement A and a given query Q, the following holds if the query matches (intersects)
the advertisement.

∀ triples (x, op1, a) ∈ A (3)

(∀ named constraints (y, (op2, b)) ∈ Q

(x = y ⇒ Intersect(op1, a, op2, b) = true))

Note that we substituted the Intersect procedure for the Apply procedure in equation 1.
So we say that a query and an advertisement intersect if each set of corresponding

triples and named constraints intersect as defined by the Intersect procedure. This now
reduces our task to defining Intersect(op1, a, op2, b) for every pair of operators (op1 and
op2) with arbitrary attribute values (a and b).

6 Defining Operators in Siena

We must digress slightly to discuss the details of operator definition in Siena. The process
of adding an operator to Siena involves defining two procedures: Apply and Covers.

6.1 The Apply Procedure

Equation 1 requires the computation of expressions of the form Apply(op, a, b). Thus
adding an operator to Siena requires defining an Apply procedure to compute this value.

The Apply procedure for ordinary operators defines the ordinary application seman-
tics of the operator. Thus, given two values a and b and an operator op, this procedure
computes the value of (a op b) (e.g., (5 > 7)).

6.2 The Covers Procedure

When defining a new operator, the other required procedure is Covers. This is required
to support one of the forms of scalability provided by Siena. This procedure supports

6

an optimization that can reduce the number of filters that a given server must maintain.
Without this optimization, Siena would be forced to propagate all filters to all Siena
routers.

The Covers relation between two filters F1 and F2 is the key to this optimization.
The relation (F1 Covers F2) holds if every message that matches F2 also matches F1.
In other words, the set of messages matching F1 is a superset of the set of messages
matching F2.

Since a filter is composed of triples of the form (x, op, a), F1 covers F2 if the following
holds.

1. Each attribute name occurring in F2 also occurs in F1.

∀ triples (x2, op2, b) ∈ F2

(∃ triple (x1, op1, a) ∈ F1 s.t. x2 = x1)

2. The set of values satisfying a triple from F2 is a subset of the set of values satisfying
any similarly named triple from F1.

∀ triples (x, op1, a) ∈ F1 (4)

(∀ triples (x, op2, b) ∈ F2

(∀ z ((z, op2, b) = true ⇒ (z, op1, a) = true)))

We define a Covers procedure with the following interpretation.

Covers(op1, a, op2, b) = true

if (∀ z ((z, op2, b) = true

⇒ (z, op1, a) = true))) (5)

Covers(op1, a, op2, b) = false otherwise

(6)

At a given router, the Covers relation forms a forest of partial order graphs over all
the filters known at that router. Two filters F1 and F2 are in the same partial order
graph if (F1 Covers F2) or (F2 Covers F1). Otherwise, they are in different graphs in
the forest. Siena routers need only propagate the most general filters, which are those
that are at the root of each Covers graph.

Again, in order to participate in this optimization, each operator (op) must define
the procedure Covers(op1, a, op2, b) to compute if the Covers relation holds between two
triples (x, op1, a) and (x, op2, b) from two different filters. This procedure assumes that
(1) each triple has the same attribute name, and (2) that the operator in one or both of
the triples is operator op.

It is is important to note that the Covers procedure is optional, albeit highly desirable.
Defining the Covers procedure to always return false is acceptable. The consequence,
though, is that all filters containing that operator will be propagated to all Siena routers
and significant inefficiencies may result.

7

7 Implementing Queries in Siena

The first step in implementing queries in Siena is to introduce a new data type repre-
senting constraints. This is straightforward to implement and requires defining a new
type in the type enumeration and defining serialization and de-serialization procedures
for constraints.

The second step is figure out the effect of our new data type on the Apply and Covers
procedures. Two question arise in this context.

1. When we are matching a message against a filter, how do we know when to compute
the normal Apply semantics and when to compute the Intersect semantics?

2. How do we compute the Covers relationship between two advertisements?

The answer to question 1 is that we need some kind of signal to indicate what to do,
but we need to do it in such a way as to minimize the disruption to the standard operation
of Siena: we would like to be able to distributes queries and normal notifications using
the same set of Siena routers.

We use the presence of a constraint value in the message as our signal to invoke
intersect semantics. So assuming that the second argument comes from the notification
message, we can define a revised Apply procedure as follows

Apply(op1, (op2, a), b) = Intersect(op1, op2, a, b)

Apply(op, a, b) = (a op b)

The second equation is the standard interpretation used for all operators when a con-
straint is not involved. The first equation is used to invoke intersection semantics.

The remaining task with respect to Apply is to define Intersect(op1,op2,a,b). Recall
that the idea is to try to find out if there is some value for x that can satisfy both
(x op1 a) and (x op2 b). Table 2 shows some examples for pairs of operators; the values
of a and b are assumed arbitrary. The first row, for example, says that (x, =, a) intersects
(x, op2, b) is true if (a op2 b) is true; this is because the only possible value that can satisfy
both is a. The second row says that (x, <, a) intersects (x, <, b) is always true because
any x < min(a,b) will satisfy both constraints.

Our last concern is to compute the Covers relation. In the query/advertise context,
the Covers relation is being computed over advertisements and the question arises: is the
Covers relation for subscriptions directly applicable to Covers for advertisements? The
short answer is yes.

To see this, we need to go back to the definition of an advertisement, which is that it
describes a data set at a source. Thus, we can say that for advertisements Ad1 and Ad2,
Ad1 Covers Ad2 if the data set described by Ad1 is a superset of the data set described
by Ad2. Figure 3 illustrates this. If we propagate only Ad1 to other routers, then any
query Q that intersects Ad2 will also intersect Ad1, so that the query will get directed
correctly.

8

Table 2: Intersect() Semantics (Partial)

Op1 Op2 op1 ∩ op2 Rationale
= op2 a op2 b (only x = a works)
< < true (any x < min(a, b) works)
> > true (any x > max(a, b) works)
< > a > b (any x ∈ range(a, b) works)

. . .

Ad1

Ad2
Q

Figure 3: Advertisement Covering

Since the Covers relationship purely computes the superset relationship, our existing
Covers procedure can be used on advertisements to produce the correct result. The
only difference is that for subscriptions, the superset relationship refers to the space of
notifications and for advertisements it refers to the space of data sets.

8 Related Work

This work is closely allied to the Site-Select system [9] being developed at the University
of Virginia as part of the joint Willow project between Colorado, Virginia and UC, Davis
[13]. Site select provides a simpler query language based on bit-sets. In effect a client
advertises a set of bits that represent boolean properties that characterize the client site.
A query is another bit-set whose bits indicate attributes of interest. The queries are
directed at the sites that advertise at least the same bits as in the query. By adding, as
we have done [8], some bit-set specific operators, we can subsume Site-Select matching.
On the other hand, Site-Select has a built-in response mechanism that supports a limited
form of aggregation of responses to be returned automatically to the originator of the
query. As we have indicated, our query/advertise system is agnostic with respect to how
responses are returned. We anticipate that we can merge this effort with the Site-Select
response mechanism to produce a more powerful query/advertise/response system.

Resource discovery systems are closely related to query/advertise and can easily be
realized using the query/advertise system. This is because many of these systems in
effect advertise resources based on descriptive properties that may be queried. Intentional
Naming [1] represents some of the earliest work in resource discovery. Its query language

9

was relatively sophisticated and could handle, for example, some forms of inequalities. Its
protocol was strictly oriented to discovery and did not support the equivalent of Covers.
Jinitm [10, 21] is perhaps the best known of the resource discovery systems. Jini defines a
collection of programming interfaces. The implementations behind them are prototypes
that do not appear to have addressed issues such as wide-area scale and message traffic.

Many peer-to-peer systems [14] have the capability to carry out the equivalent of
distributed query. This is because most of them are being used for file and music sharing,
and it is important to be able to locate music files based on various attributes such as
artist, title, and sampling rate. Examples of this include Kazaa [12] and the now defunct
Napster [16, 22]. For most of these systems, the properties upon which queries can be
built is essentially fixed by the network provider.

Gnutella [6] and Freenet [5] are examples of peer-to-peer systems that are in some
ways more general than music sharing networks. The primary problem with Gnutella
has been its query distribution protocol. In its original incarnation, it was extremely
wasteful of bandwidth because it propagated messages indiscriminately. Attempts have
been made to improve Gnutella’s protocol [15] , but with limited success. We have
demonstrated in our previous work [7] that query/advertise built on publish/subscribe
could produce a system that was similar to Gnutella but was superior in performance.
With the work described here, the expressiveness of query/advertise is now at least as
powerful as Gnutella.

Freenet provides anonymous distributed file sharing. It is based on distributed hash
tables, and as a result it has a much more restricted notion of query than any other
peer-to-peer system: clients ask for specific files (identified by a unique hash) and the
search process stops when that specific file is found. Caching is also supported. Freenet
uses message traffic about as efficiently as does Siena’s content-based routing, and far
more efficiently than Gnutella. It is apparently still an open question [2] if Freenet can
be extended to support the general queries provided by query/advertise.

Astrolabe [20] provides yet another model for distributed query. It organizes its net-
work of sites into a tree. Queries are SQL statements that are propagated from the top of
the tree down to the leaves. These queries are currently restricted to aggregation queries
(e.g., summation, average, and count). The queries are executed at the leaves and the
aggregated values are passed up to the next level where they are further aggregated. This
is repeated until a single value is computed at the root. As the authors note, new query
propagation is assumed to be relatively infrequent; rather the model efficiently ensures
that the values of existing queries are maintained in the face of changes in the underlying
databases upon which the queries are applied. In contrast, our query/advertise supports
dynamic propagation of queries as the norm, but has no ability to support hierarchical
aggregation because no hierarchy exists.

Our query/advertise system is built upon Siena, but other publish/subscribe systems
are available as alternatives upon which to build a query/advertise system. There are two
issues here: scalability to wide-area networks (using some equivalent of the Covers rela-
tionship) and expressiveness. Most publish/subscribe systems are designed for local-area
network use. Examples are Field [17] and ToolTalk [11]. Some other systems address are

10

intended to operate over wide-area networks. Examples include TIBCO [19], Elvin [18],
and Siena. Both TIBCO and Elvin appear to suffer from a lack of automatic Covers
relation support. The equivalent of the Covers relations must be manually established
and maintained.

TIBCO is also representative of another form of publish/subscribe system often re-
ferred to by the term “subject-based.” Expressiveness is a problem for such systems
because they provide only a single content string (the subject) for use in routing. This
severely limits expressiveness, and it is not clear if any sort of reasonable query/advertise
system could be built using a subject-based system.

9 Conclusions

We have demonstrated how to modify the Siena publish/subscribe system to efficiently
support query/advertise and to support an expressive query language. The distribution
is controlled by advertisements describing the data sets available at each site. The query
language is supported by adding constraints as a first class data type to the type system
of the publish/subscribe infrastructure.

A modified version of Siena is available from the author. This version implements
the query/advertise system described in this paper. Further improvements to the query
language are being explored. These include adding variables to allow inter-triple value
matching and support for additional queryable values such as unification of functional
terms.

10 Acknowledgements

This material is based in part upon work sponsored by the Air Force Research Labora-
tories, SPAWAR, and the Defense Advanced Research Projects Agency under Contract
Numbers F30602-00-2-0608 and N66001-00-8945. The content of the information does
not necessarily reflect the position or the policy of the Government and no official en-
dorsement should be inferred.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The Design and
Implementation of an Intentional Naming System. In Proc. of the 17th ACM
Symposium on Operating System Principals, Kiawah Island, SC, 1999.

[2] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up
data in p2p systems. CACM, 46(2):43–48, 2002.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving Expressiveness and
Scalability in an Internet-Scale Event Notification Service. In Proc. of the 19th

11

ACM Symposium on Principles of Distributed Computing, Portland OR., July
2000.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Content-based addressing and
routing: A general model and its application. Technical Report CU-CS-902-00,
Department of Computer Science, University of Colorado, Jan. 2000.

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Proc. of the ICSI
Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA,
2000. International Computer Science Institute.

[6] Gnutella Home Web Page. http://gnutella.wego.com/.

[7] D. Heimbigner. Adapting Publish/Subscribe Middleware to Achieve Gnutella-like
Functionality. In Proc. of the 2001 ACM Symposium on Applied Computing (SAC
2001), Las Vegas, Nevada, 11-14 March 2001.

[8] D. Heimbigner. Extending the Siena Publish/Subscribe Type System. Technical
Report CU-CS-946-03, Department of Computer Science, University of Colorado,
Jan. 2003.

[9] J. Hill. Site-Select Messaging for Distributed Systems. Technical Report
CS-2002-06, Department of Computer Science, University of Virginia, Apr. 2002.

[10] Jinitm Specification, version 1.1 Beta, 1999.

[11] A. M. Julienne and B. Holtz. ToolTalk and open protocols, inter-application
communication. Prentice-Hall, 1994.

[12] Kazaa Home Web Page. http://kazaa.com/.

[13] J. Knight, D. Heimbigner, A. Wolf, A. Carzaniga, J. Hill, and P. Devanbu. The
Willow Survivability Architecture. In Proc. of the Fourth Information Survivability
Workshop, Vancouver, B.C., March 18–20 2002.

[14] R. Lethin. Technical and social componentsof peer-to-peer computing. CACM,
46(2):30–32, 2002.

[15] Mojo Nation Home Web Page. http://www.mojonation.net/.

[16] Napster Home Web Page. http://www.napster.com/.

[17] S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment.
IEEE Software, pages 57–67, July 1990.

[18] W. Segall and D. Arnold. Elvin Has Left the Building: A Publish/Subscribe
Notification Service with Quenching. In Proceedings of the 1997 Australian UNIX
Users Group, Brisbane, Australia, Sept. 1997.

12

[19] TIBCO, Inc. Rendezvous Information Bus, 1996.
http://www.rv.tibco.com/rvwhitepaper.html.

[20] M. van Renesse, K. Birman, and W. Vogels. Scalable Management, and Data
Mining Using Astrolabe. In Proc. of the 1st Int’l Workshop on Peer-to-Peer
Systems, Cambridge, Mass., Mar. 2002.

[21] J. Waldo. Jinitm architectural overview: Technical white paper. Technical report,
Sun Microsystems, 1999.

[22] J. Zien. The technology behind napster. About, 2000.
http://internet.about.com/library/weekly/2000/aa052800b.htm.

13

